Exploring Density

Density describes the relationship between a substance’s mass, or weight, and its volume, or how much space it takes up. Things that are more dense take up less space than things with less density. To visualize density, let’s compare baseballs and marshmallows. A regular baseball weighs about one pound. It is small and compact and fits in the palm of your hand. A 16 oz. bag of marshmallows also weighs one pound, but because there is more air incorporated into the marshmallows, they are less dense. One pound of marshmallows takes up a lot more space, or volume, than a one-pound baseball.

When you combine substances that have different densities, the substances with the greatest density tend to move toward the bottom, while those with lesser densities tend to rise to the top. Gases tend to be lighter and less dense than liquids. Liquids tend to be lighter and less dense than solids. Even within these groups, there are a variety of densities.

The Experiments

Simple Experiment

Supplies: A clear jar with a lid, vegetable oil, water, food coloring (optional).

What to do: Fill the jar about half-full with water. Add food coloring, if desired. Pour in vegetable oil until the jar is almost full. Put the lid on the jar and MAKE SURE IT IS TIGHT. Give the jar a good shake so that the water and oil are thoroughly mixed. Set the jar where it won’t be disturbed and observe the liquid.

What is happening: The oil is less dense than the water, so it rises up to “float” on the surface of the water. The water and oil do not mix because of the molecular properties of each compound. Water molecules tend to want to “stick” to other water molecules, while oil molecules tend to want to stick to other oil molecules. This is because of something called molecular polarity, where the structures of the two molecules are not compatible. They push each other away, similar to a pair of magnets that won’t stick together. The longer the jar sits, the more the water and oil will sort themselves out, until they are completely separate again.

Complex Experiment

Supplies: A large jar or clear glass cylinder, liquid measuring cup with pour spout, a turkey baster, different colors of food coloring, honey or molasses, light corn syrup (Kayro), blue liquid dish soap, rubbing alcohol, yellow corn oil, water.

What to do: Pour 1 cup of honey or molasses into the bottom of your jar. Measure out 1 cup of light corn syrup and add some red food coloring. Stir until well combined. Carefully pour the corn syrup into the jar, making sure to avoid hitting the sides of the jar. Measure out 1 cup of dish soap. Slowly add the dish soap, again avoiding the sides of the jar. Measure out 1 cup of water and add to the jar, but this time use the turkey baster to slowly drizzle the water down the side of the jar. Measure out 1 cup of corn oil and add to the jar, again using the turkey baster. Finally, measure out 1 cup of rubbing alcohol. Add green food coloring and stir well. Add the rubbing alcohol into the jar using the turkey baster.

What is happening: Different liquids have different densities. Liquids like honey and dish soap are more dense than water, while other liquids, like rubbing alcohol and vegetable oil are less dense and will float above the water. Adding the food coloring helps distinguish the different layers. The various densities of the different liquids is what keeps the layers separate.

Links

You could take the Density Column experiment one step further by dropping in solid objects to see where they land, OR you could just watch this great video from the Bearded Science Guy.